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Using Heisenberg's matrix formulation of quantum mechanics, a method is 
given for quantizing "(olume-preserving polynomial mappings. The energy levels 
of the linear map are obtained exactly and those of the cubic, nonintegrable 
map are obtained approximately and numerically. 
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1. INTRODUCTION 

Dear Nico, 
May you continue to exemplify your "Physics is a Way of Living, not 

just a way to make a living ''(1) for many more student generations to come. 
Watching you pace back and forth ("polar-bearing," to coin a Hollan- 
dicism) while casting before us students the pearls of physics mixed with 
wisecracks, paradoxes, and one-liners, we learned and saw that it is a 
fascinating way of living. Watching your Triumph Spitfire tear away, we 
surmised there might even be a way to make a living along that dangerous 
road. We admired, and admire, your insights and extremely clear opinions. 
The only time I remember uncertainty creeping in was when a local paper 
asked your choice for some position in the University: "I don't know 
whether I prefer Mickey Mouse or Donald Duck." We, on the other hand, 
were certain that either one would have been preferable. 

One of the many nonlinear problems of interest to van Kampen ~1 vj is 
"quantum chaos. ''(5-7) At this time it is not clear whether there exists any 
chaos in quantum systems, c4) Here I consider the related problem of trying 
to quantize a typical nonintegrable system, i.e., a Hamiltonian system 
which, therefore, is neither completely "ergodic" (/chaotic) nor completely 
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"integrable. ''(8'1~ We do know how to quantize two classes of nontypical 
Hamiltonian systems, i.e., integrable systems and a few "ergodic" non- 
integrable ones. (5 8,16) It is an open problem how to quantize typical non- 
integrable systems, notwithstanding the fact that this covers "almost all" 
Hamiltonians.(8'l~ 

Classically we usually find it simpler to study the corresponding non- 
integrable mappings (:difference equations) rather than the original differen- 
tial equations. (8'1~ Here, I propose to quantize some typical, "elliptic" 
mappings of the plane and find their energy levels, employing Heisenberg, 
Born, and Jordan's original matrix mechanics formulation of quantum 
mechanics. (1315) Some maps (billiards) have been treated earlier, 
semiclassically or numerically, by various authors, employing the Wigner 
and/or familiar Schr6dinger formalisms. (5-7'x6'27-32) 

In Section 2, Heisenberg's matrix mechanics, in a form applicable to 
mappings, is introduced. It contains most of the notation and formalism we 
shall need. Sections 3 and 4 are more applied. In Section 3, the simplest 
possible example is provided, by quantizing the linear "harmonic" 
("elliptic") map exactly. I compare it with the familiar quantization of the 
full (4-dimensional) Hamiltonian, which reproduces this linear.map as its 
"surface of section map." Apart from a trivial change of time (/energy) 
scale, we exactly recover the levels due to the motion "parallel" to the plane 
of the map. The levels due to the motion "perpendicular" to the plane 
of the map are not obtained, of course, but are not excluded by the 
present approach. In Section4.1, I calculate the "levels" of a cubic 
map, approximately and numerically. The difference between any two 
subsequent levels (divided by h) is smaller than, but stays close to, the 
rotation numbers for the "corresponding" classical orbits of the map. These 
level seperations for the cubic map are smaller than those for the linear 
map, but not much smaller, in the energy range considered here. In 
Section 4.2 I study the time evolution of a mixed state. Since I do not 
employ physical units in this paper, Planck's constant (/2n):h merely is a 
(positive) number here whose value we are at liberty to choose. The 
maximum values of h for which our results stay bounded are larger in 
Section 4.2 than in Section 4.1. 

2. Q U A N T U M  M A T R I X  M A P S  

A form of matrix mechanics is developed here which is applicable to 
mappings. No previous knowledge of matrix mechanics is assumed. I use 
systems with two degrees of freedom as an example of the procedure and 
notation. 

Given a real-analytic Hamiltonian system with Hamiltonian H (in 
4-dimensional phase space), we consider, for just one pair of its conjugate 
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variables, the relation between their values at integer moments in time, i.e., 
its "stroboscopic" mapping T,(1~ 

T: qt+l=g(q,,p,), pt+l=f(qt,  p,), t . . . . .  -1 ,0 ,1 ,2 , . . .  (2.1) 

with g and f real analytic functions. This is a mapping of the q, p plane to 
itself, also known as a "time-1" map or a (curved) "surface of section" map 
(Poincar6). (1~12) The unit of time in Eq. (2.1) is chosen to be the time of 
return of an orbit to a (curved) "surface of section" ("close to" a flat 
surface 112). When the map (2.1) is generated from a "larger" (here 
4-dimensional) Hamiltonian system, the two conjugate variables q and p 
can usually be chosen such that the Jacobian (determinant) of the map 
(2.1) equals 1 everywhere in the q, p plane (cf. Poincar6 invariants). ~ 
Hence this "area-preserving" property can be reexpressed as 

{qt+l ,Pt+l}={g, f }  (=-@/OqtOf/@t-Of/~qtOg/@,)=l (2.2) 

at all values of q, p, employing the classical Poisson brackets {.. .  }. So we 
see that {q,+l, P,+~} = {q,, P,}, a "mapping constant of the motion." For 
planar maps this has a similar function, and similar consequences, as 
Liouville's theorem has in the full (4-dimensional) phase space. 

In the original Heisenberg matrix approach to quantum 
mechanics(13 15) scalar variables are replaced with infinite-dimensional 
matrices, e.g., the q, p become complex infinite matrices Q, P which are 
Hermitian, i.e., Q* = Q, P+ = P, with real eigenvalues. 

The most unusual aspect of matrix mechanics to people solely familiar 
with the later Schr6dinger approach is that the (time-dependent) Q, P 
matrices do satisfy the usual classical, e.g., nonlinear, equations of motion, 
since Heisenberg and others wanted to maintain the classical equations of 
motion in their original approach (13-151 [cf. Eqs. (2.12)]. Here the mapping 
T in (2.1) must be satisfied and our time-dependent "matrix map" T 
becomes 

T: Q , + I = g ( Q , , P , ) ,  P ~ + l = f ( Q , , P , ) ,  t . . . . .  - 1 , 0 , 1 , 2  .... (2.3) 

with g = g*, f =  ft. Quantum extensions g, f of the classical g, f i n  our map 
(2.1) are obtained from the Taylor series expansions of g(q, p), f(q, p) and 
the replacements q ~ Q, p ~ P. In general, there is more than one such 
"qm extension" f, each with the same classical analogue (/limit)f, as we see 
below Eq. (2.4). For the maps I employ in Sections 3 and 4, however, the 
extensions g(Q, P), f(Q, P) are unique. If no confusion is likely to arise, 
I often drop the index t. 

Essential to quantum mechanics is the commutator (13 15.17) 

[Q,, P,]  = Q , P ~ -  P ,Q,  = ihI (2.4) 
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where I is the identity matrix and h is Planck's constant divided by 2re. This 
constraint (2.4) on Po, Qo, for instance, is of course different from the 
classical initial conditions, which can both be chosen arbitrarily. Formally, 
it is the main difference between quantum and classical mechanics, 
cf. Section 4.2. Repeated application of this "qm commutator" shows that 
many Q, P permutations in the qm (series) extensions g, f are in fact the 
same, or cancel, but not all: for example, the two Hermitian observables 
1 3 2 5(Q p +p2Q3)  and Q P Q P Q  While both expressions have the same 
classical analogue, q3p2, they are different operators which cannot be 
equated via the qm commutator  (2.4). (18~ The maps we employ in 
Sections 3 and 4, however, do have unique extensions. In general, we prefer 
those extensions g, f that satisfy as many of the "classical" equations and 
conditions as possible, e.g., the "ap property" (2.2). 

The Poisson brackets of Eq. (2.2) have a familiar qm extension, 
since (17) 

lim (1/ih)[g, f]  = {g, f}  (2.5a) 
h~O 

as could be checked by repeated and tedious application of the qm com- 
mutator (2.4) to the series definitions of g, [,(13-15,17,19-21),2 The derivatives 
in {. } are the usual derivatives here, but with respect to the appropriate 
variables Q, P, while maintaining the original ordering of the Q, P's in g, f. 
For  instance, 

[Q, P Q P ]  = ih ~3(pQp)/~?p = ih(QP + PQ) 

Using Eq. (2.4), it is easily checked that whenever g (or f) is linear in Q, P, 
Eq. (2.5a) is an identity for any value of h, i.e., taking h--*0 is not 
necessary: 

(1/ih)[Q, f]  = {Q, f} = ~3f/0P (2.5b) 

Hence, instead of the area-preserving property (2.2), we require the 
"AP property" 

(1/ih)[g, f]  = I (2.6) 

2 The precise relation between I-g, f] and {g, f} for any finite value of h, and not just in the 
limit h~ 0  as in Eq.(2.5a), can be obtained by induction, via repeated and tedious 
application of the qm commutator (2.4) to the series definitions of the functions g(Q, P), 
f(Q, P). McCoy ~2~ gives 

oo l [ g , f ] :  ~ (--ih)m-l~Omg ~mf ~mf ~mg] 
rn=l m! [63Qm ~?pm ~?Qm gpm] 
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of the particular g, f in the matrix map T of (2.3), since the classical limit of 
Eq. (2.6) is Eq. (2.2), according to Eq. (2.5a). Note that whenever g (or f) is 
linear, the AP property (2.6) is the exact and unique qm extension of the 
classical ap property (2.2), for any value of h (see footnote 2). No limit 
(2.5a) is needed in that case. 

It follows from Eq. (2.6) that the qm commutator (2.4) is a mapping 
constant o f  the motion: 

[Q,+ ~, P,+~] = [g, f] = / h i =  [Q,, P,] (2.7) 

under our AP matrix map T (2.3), (2.6), i.e., the qm commutator (2.4) 
holds for all (integer) values of t. 

A second essential "axiom" of quantum mechanics is that there 
exists a linear operator U, governing the evolution over a time t, e.g., 
Q, = U,QoU , (hence U tU, = I), which is characteristic of the system (~7) 
(autonomous here), i.e., one and the same operator U, for all all qm 
observables. It is from this "axiom" that the Schr6dinger equation and 
Heisenberg equation are usually inferred (see Chapter 5, w 28 of ref. !7). 
The U, does depend on the initial conditions, U, = Ut(QoPo). For the time 
evolution of an arbitrary observable Yt this means 

whence 

Y ,=  U,YoU r (2.8a) 

U , =  (U1) t , (UIU,)  Yo-- Yo(UIU1) (2.8b) 

since Y~=Y, ,  So (U~U1) commutes with all observables, and therefore 
with all (complex) matricesJ 17'23) Hence (U~U~) must be proportional to 
the identity I. Since the proportionality constant has no effect on (2.8a), we 
take UIU~ =I ,  i.e., U1 is a "unitary" matrix. A unitary matrix can be 
rewritten as 

l J  1 ~- e iv, with v t = v (2.8c) 

the "polar decomposition" of U I  .(23) For our map variables this produces 
the representation 

Qt = eiVtQ e-iv' ,  p, = eivtpe iv,, t - .... - 1, 0, 1 .... (2.9) 

where Q -= Qo, P - Po- This representation of Q,, Pt is compatible with the 
time evolution under our matrix map and the qm commutator, as we see 
by substitution of Eq. (2.9) into Eqs. (2.3) and (2.4)-(2.7) and multiplying 
out e -+iv' terms. 

822/53/1-2-30 
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If our map (2.1) is the surface of section map for a "larger" 
Hamiltonian system (H'~2) with Hamiltonian H and qm extension H, obser- 
vables can be similarly expressed, (~3 xs,~7.is) but now in real time r, as 

Y(z ) - e im/hYe  in,/h (2.10) 

The v in the (mapping) representation (2.8), (2.9) can thus be interpreted 
as H/h, the part of some "larger" Hamiltonian H/h, which generates our 
map (2.1), (2.3) as its surface of section map. From Eq. (2.10) one finds the 
familiar Heisenberg equations: 

whence 

dY(z)/dz = (1/ih)[Y(z), H] (2.11) 

dQ(z)/dz = (1/ih){ Q(z), H} = ~3H/~3P 
(2.12) 

dP(z)/dz = (1/ih){P(z), H} = -8H/OQ 

[cf. Eq. (2.5b)], i.e., the canonical, e.g., nonlinear, equations of motion for 
Q(z), P(z) under the "larger" Hamiltonian H/h. 

The v representation (2.9) immediately yields the corresponding 
equations for our quantum map T in (2.3), (2.6): 

y t + l _ y t = _ [ y t ,  eiV]e iv, y =eiVtye-iVt (2.13) 

g(Q,, P~) - Q, = Q, + 1  - -  Q, = - ih(Sd' /SP,)  e - "  (2.14a) 

f ( Q , , p , ) _ p = p , +  _ P = i h ( S d V / S Q 3 e  iv (2.14b) 

whence 

[cf. Eq.(2.5b)] .  Note however that this U = e  iv(Q"P'l usually is not 
differentiable and certainly not analytic, for a nonintegrable map. (8'1~ The 
same is true for its "full" Hamiltonian H, if we (try to) reexpress H as a 
function of q,, p~ only. (8"~~ A differentiable, but nonanalytic, representation 
of U does exist for certain maps. (27'28) 

Since we are interested in the energy levels, i.e., the eigenvalues of 
H - hv, we take it that we are already working in a "representation" of all 
variables in which v and H are diagonal: 

(k[vln)=(v)k., ,=fk.,~vn=_6k., ,E,,/h=(klHIn)/h, k , n = 0 ,  1 .... (2.15) 

with eigenstates In), the usual scalar product and real vn, En .(17) 
According to Eq. (2.13), Y, is a mapping constant of the motion 

Y,+I = Y, if  and only if  Y, commutes with eiL Since v is diagonal, so is e i~, 
and 

[e iv, Y]k,~ = Yk,~(eiVk--e i~) 
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Hence, in general, this commutator  vanishes if and only if Y is diagonal as 
well. If e ~v is degenerate, i.e., if vk = vn + p27~ for some integers k, n, p, the 
Yt clearly need not be diagonal in order to be a mapping constant of the 
motion. Thus, we find that a variable is a mapping constant of the motion 
if and only if the variable is diagonal ("only if": as long as e iv is not 
degenerate). Note that according to (2.11), Y(z) is a constant of the motion 
for all differential equations of motion generated by the "larger" 
Hamiltonian H if and only if Y is diagonal ("only if": as long as H/h is not 
degenerate). 

Translating an argument of Jordan (13~ to our mapping case, we apply 
the above to our qm commutators. Equation (2.7) states that this com- 
mutator is a (mapping) constant of the motion. Hence, in general, the qm 
commutator  is diagonal and we need to satisfy only the diagonal elements 
of the commutator  (2.4): 

Im Qn,mPm,n = �89 n, m = 0, 1,... (2.16) 
0 

where Im denotes the imaginary part, Pn,m--(P) . . . .  etc. For  our con- 
siderations all variables are without physical units and h merely is some 
number, which we choose small. 

Substituting the v representation (2.9) into our matrix map T in (2.3), 
we find the time-independent matrix "map" 

e i"Qe- '"  = g(Q, P), e~VPe-~" = f(Q, P) (2.17a) 

Qk,, ei(~k ~")= gk,,,(Q, P)  
(2.17b) 

Pk.,e i(~k-v"l = fk,,(Q, P)  

(k, n = 0 ,  1,...) after multiplying out e -+~vt terms, where gk,n---(g)k,n, etc. 
Hence, we need to solve simultaneously Eqs. (2.16), (2.17b) for Q, P, v. 
Simple ways of doing this for polynomial maps will be given in the next 
sections. 

3. P O L Y N O M I A L  A N D  L INEAR M A P S  

The two first-order difference equations of the map T in (2.1) can be 
combined into one second-order difference equation with only one variable 
x in many cases when T is polynomial (refs. 24, 25; also ref. 9, Appendix A, 
pp. 114-117). From now on I prefer to work with ap maps in this standard 
form, since only one matrix X needs to be solved, besides v. Their quan- 
tization rules are discussed first. In Section 3.2, I quantize the linear "har- 
monic" ("elliptic") map exactly, using the mapping quantization introduced 
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in Sections 2 and 3.1. In Section 3.3 these results are compared with those 
obtained from the usual quantization of the "larger" (4-dimensional) 
Hamiltonian for a pair of harmonic oscillators whose surface of section 
map reproduces our linear map exactly. The results are the "same": Of 
course our (2-dimensional) mapping quantization does not yield levels due 
to motion "perpendicular" to the plane of the map. Yet, our mapping quan- 
tization explicitly allows for the existence of such perpendicular levels and 
eigenstates, uncoupled to those of the map (i.e., with vanishing transition 
elements between them). If desired, perpendicular states and levels may be 
added afterward. The exact, and familiar, results here provide the simplest 
possible example of our mapping quantization. 

3.1. Quantizing Polynomial Maps; Second-Order Difference 
Equations 

If both f and g are polynomials whose orders are relative prime, 
the two first-order difference equations (2.1) can in general he reduced to 
one second-order difference equation (9'24) in one variable via a transforma- 
tion from q,, Pt variables to new variables x ,  y,, with the particular 
property (9,24) 

y , + l = a x ~ + b x t + 1 ,  a:~0, t . . . .  , - 1 , 0 , 1 , . . .  (3.1) 

where a and b are (constant) functions of the parameters in f and g. It is 
this relation that allows us to replace all y variables with x variables 
everywhere and end up with a second-order difference equation in just one 
variable. Such variables can always be found for all linear, all quadratic, 
and many polynomial ap maps. (9'24) For  all these maps the AP property 
(2.6) is the unique qm extension of the classical area-preserving property 
(2.2), since one of the (2) mapping equations is linear. Here we shall 
employ either the cubic map (s lo~ 

x t + l + x , _ l = 2 C x , + 2 x ~ ,  t=... ,  - 1 , 0 ,  1,... (3.2) 

or its linear part. Equation (3.2) is an area-preserving mapping ~8 12) from 
the x t_  1, x,  plane to the x, ,  xt+ ~ plane. Hence, the axes of our phase plane 
are x, and xf +1 for all integer t values. Besides the v representation of x, 

Xt=---eiVtXe -ivt, t . . . . .  - 1 , 0 ,  1 .... (3.3) 

with X~ = X, I-cf. Eq. (2.9)] and the matrix representation of the map (3.2), 
i.e., Eqs. (3.10), (4.2), we need the qm commutator  of X,_ ~ with X,. From 
the linear relation (3.1) we find 

[Yf, X,] = aEX, 1, X,],  t = ..., - 1, 0, 1 .... (3.4) 
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Since x, and yt were independent functions of q, and p, [e.q., Eqs. (3.21), 
(3.17)], (9'24"25) the left-hand side of Eq. (3.4) is some constant multiple d 
(#0 ,  in general) of [ Q ,  P , ]  in (2.4), e.g., Eq. (3.22). Thus, we obtain a qm 
commutator: 

~Xt- 1, I t ]  = (d/a)(ihI) -=/_hi, t . . . . .  - 1, O, 1 .... (3.5a) 

where, for convenience, I use the symbol _h for Planck's constant h times 
d/(2aTz). We shall only use 

IX o , x ~ ] = [ X , e i v x e  i~]=LhI (3.5b) 

[-cf. (3.3)] after multiplying out e + iv,. Since we pay no attention to physical 
units in this paper there is no practical difference here between h and b. 
Note, however, that our _h depends on the parameters of the mapping (2.3), 
or the Hamiltonian, via a and d, e.g., Eq. (3.21). For the linear, "harmonic" 
map the relation between _h and h will be derived in Eq. (3.22b). Sub- 
stitution of one of our matrix maps, (3.10) or (4.2), easily shows that 
I - I t _ l ,  X,]  = [-Xt, Xt+l]  , etc. So we see again that the qm commutator is 
a mapping constant of the motion. We saw before, between Eqs. (2.15) and 
(2.16), that this results in the off-diagonal elements of the qm commutator 
(2.4), (3.5) vanishing in general. Hence, in general, we need to satisfy only 
the diagonal elements of Eq. (3.5b): 

[X~,ml2Sin(vm-%)=�89 n=O,  1 .... (3.5c) 
m = O  

[cf. Eq. (2.16)1. As our _h has already absorbed some parameters, this 
version of the Thomas-Reiche-Kuhn sum rule/13-15) for our transformed 
map variables looks unfamiliar: Normally, there is no sine function, but just 
v m - v ~ .  Yet we find in Section 3.2 that the exact, familiar results are 
obtained from Eq. (3.5c), using Eq. (3.22b). Similarly, some other results in 
Section 3.2 may look unfamiliar. 

3.2.  Q u a n t u m  Leve ls  o f  t h e  Linear M a p  

Consider an area-preserving, linear "elliptic" mapping: 

x,+l = L j l x , + L 1 2 y t ,  Yt+I =L21x~+L22y,  (3.6a) 

with t . . . . .  - 1 ,  0, 1,..., and 

det (L) = 1 and ]trace(L)l < 2 (3.6b) 
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[cf. Eq. (2.2)-], where L n = ( L ) l , l ,  etc. Eliminate the y's from these 
equations and combine them into one second-order equation ~8 lO,24,25) 

X,+l+X, 1=2Cx, with 2C=t race (L) ,  t . . . . .  - 1 , 0 , 1  .... (3.7) 

where I lowered all t by 1. One is interested in the stable, "elliptic," case, 
where ICI < 1. The exact classical solution of the "harmonic" map (3.7) 
then is 

x t=zd~t+Se-~ ' - r s in (~ t+O) ,  with cos e -  C, 0<c~<Ir  (3.8) 

real e, r, ~b, complex z, and integer t cf. Eq. (4.5). Since a linear mapping is 
"Integrable, ''(8-1~ it has a smooth, real, analytic constant of the motion, a 
"second" integral J: 

- - 1  2 2 J= ~(x t + x,+~) - Cx,x,+~ = constant,, t = ..., - 1, 0, 1 .... (3.9) 

in addition to the full (4-dimensional) Hamiltonian H in (3.19a), from 
which our surface of section map (3.7) can be derived. ~ 

The matrix representation of our map (3.7) is 

X , + I + X ,  ~=2CX, ,  t = . . . , - 1 , 0 , 1  .... (3.10) 

Substituting the v representation (3.3), we obtain the time-independent 
matrix "map": 

ei~Xe i~ + e-i~XeiV = 2CX (3.11a) 

i.e., 

Xk,nCOS(Vk--Vn)=COS(e)Xk,,, k,n=O, 1 .... (3.1 lb)  

after multiplying out e +iv' terms [cf. Eq. (2.17)]. The qm commutator 
(3.5c) and Eq. (3.11b) are solved by 

v , = ( n + � 8 9  X,+l,n=(n+l)l/2(_h/2sine)l/Zei~"=Xn,,+l, n=0,1, . . .  

(3.12) 

where ~n is an arbitrary phase angle and the (Xn+~,n=-gn,n§ are the 
only nonvanishing elements of X. The level v0 = �89 is chosen somewhat 
arbitrarily. Formally, the solution (3.12) is not unique since vanishing (!) 
off-diagonals might be inserted between the first off-diagonal (3.12) and the 
main diagonal. More generally, a "direct product ''~22) or "direct sum ''~22) of 
the X with any identity matrix is a solution as well. This amounts to 
inserting new levels, uncoupled to the ones above, and allows for any "per- 
pendicular" degrees of freedom, as mentioned earlier. As our _h has already 
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absorbed some parameters, this version (3.12) of the matrix elements, (13-~5) 
for our transformed map variables, looks unfamiliar. Yet, using Eq. (3.22b), 
we recover the familiar results. The solution (3.12) also diagonalizes the 
second Integral J of (3.9) [we symmetrized its last term into 
�89 + x~+~x~)]" 

Jk,~ = 6k,,,(n + �89 h sin ~, n = 0, 1,... (3.13) 

Much of this appears similar to the levels of the familiar harmonic 
oscillator. ~ Note that the diagonal second integral J above [even after 
reexpressing b in terms of h via Eq. (3.22b)] is different from the diagonal 
"mapping Hamiltonian" whose levels we find, using Eqs. (3.12), (2.15), 

H~,~=6k,,,E~=6~,~hv,=6~,,(n+�89 n = 0 ,  1 .... (3.14) 

These are harmonic oscillator levels indeed [reexpressed in terms of our 
"rotation number" ~ (3.8), a ratio of two frequencies, times 2g; cf. 
(3.t7b)](13 ~5) The "zero-point" levels Ho,0 and J0,o are chosen somewhat 
arbitrarily, since constants can be added to H and/or J without any effect 
on the equations of motion. For our harmonic map the J of (3.13) and H 
of (3.14) (whence e iv) obviously are commuting operators. In this harmonic 
case ~he e iv is degenerate if and only if e/2~ is a rational number. Note that 
in the case of degeneracy the {e iv"~} contain only a finite number of 
independent exponentials [as do the {e ;~"~} in (3.20)] and mapping 
constants of the motion need not be diagonal. The mixed state solutions, 
where v need not be diagonal are given in Eq. (4.5). 

3.3. Compar ison w i th  the Famil iar  Quant izat ion of the Full 
Hami l tonian  

Consider two harmonic oscillators 

2y(z) (3.15) d2x('c)/d'r 2 = -CO2xX(~), d2y(~)/d~ 2 = - w y  

describing a harmonic oscillator of mass m in two spatial dimensions and 
real time z. The usual classical solution is of course 

x(~) = A sin(ogx~ + ~), y( 'c)=Bsin(COyr+q) (3.16) 

Simple trigonometry shows that 

x(v + 27~/o9v ) + x(v - 27t/~%.) = 2Cx(z) (3.17a) 

with 
C = cos(a), ~/2~ = r %, (3.17b) 
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Hence Eq. (3.17a) is the same as our linear map (3.7) once we change the 
time unit of ~ at discrete moments in time according to 

t=-r(coy/2~)  and x ~ - x ( z )  at t . . . .  , - 1 , 0 ,  1 .... (3.18) 

The Hamiltonian H of the 2-dimensional harmonic oscillator (3.15) is 

2 1 2 2 2y2) (3.19a) H = - (p2 + py ) /2m + ~m(coxx + COy 

with Px = m d x / & ,  etc. Its familiar quantum levels are (~3 15) 

xa + with ~ =- (n + 1) hco~c, n, n x, ny = O, 1 .... ~nx,ny ~ nx Y~n),, F'n 

(3.19b) 
and Yen is defined analogously. Comparison with the levels En [-Eq. (3.14)] 
of our mapping shows 

x~, = (coy/2~) E ,  
whence 

e x p ( i ~ e , r ) = e x p ( i E ,  t) at t . . . . .  - 1 , 0 ,  1 .... (3.20) 

[cf. (3.18), (3.17b)]. Hence, our mapping quantization yields the exact 
energy levels due to the x motion (apart from a trivial change of 
time/energy scale depending on the perpendicular motion). 

Finally, we express the h we used for the harmonic map in (3.12), 
(3, 13), and (3.5) in terms of h. Note from Eqs. (3.16)-(3.18) that 

x , _  1 =- x ( r  - 2re~COy) = Cx(~)  - p~(r )  sin(ct) /m~ (3.21) 

Thus the qm commutator  (3.5a) for X becomes 

[-Xt 1, X t ]  = I-X, Px] sin(~)/mcox = i_hI (3.22a.) 

whence 

h = h sin(c~)/mcox (3.22b) 

for our harmonic map (3.10). Substitution of this _h produces the more 
familiar forms of the matrix elements X~+l., I-Eq. (3.12)] and of the 
Thomas-Reiche-Kuhn rules (3.5c). (13-15) 

In the next section I treat a cubic "nonintegrable" mapping, cf. 
Section 3.1 of Moser's 1968 article reprinted in ref. 10. ~8~~ There is, by 
definition, no second integral in addition to the Hamiltonian. Hence, the 
analogue of H survives but the analogue of J disappears. 

4. Q U A N T U M  LEVELS OF T H E  C U B I C  M A P  

Having introduced the procedure and notation, I proceed with the 
quantization of the area-preserving cubic map (8'9'm) 

x t + l + x  t ~ = 2 C x , + 2 x  3, t . . . .  , - 1 , 0 , 1 , . . .  (4.1) 
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Note that Eq. (4.1) has unbounded solutions as well as bounded ones (e.g., 
at C = 0 ,  take x0 = 10=Xl). Hence, in the quantum version, one expects 
there to be "tunneling" and no truly stationary (t--> oo) solutions at 
all! (15'~7'18) Thus, technically, there are no truly discrete levels with real v, 
(2.15). In practice however, I truncate the X, H, and v to finite 
( N +  1) x ( N +  1) matrices. As long as the truncation is such that for all our 
states In) the rms displacements (nl X 2 In)1/2 (with n ~< N) stay well within 
the classically "bounded" region, one expects not to see the effects of 
tunneling in practice, since there is then no coupling to higher energies 
(with classically unbounded displacements). This is the analogue of the 
usual WKB approximation in the Schr/Sdinger picture, or perturbation 
theory over only a finite number of "levels." It is usually "justified" by the 
(generally) extremely long times before tunneling takes place, i.e., experi- 
mentally one would see "levels" indeed/13 ~5) The truncation amounts to 
a "cutoff" of the map (4.1) and the H. One of the preliminary results below 
is that one gets numerical convergence up to states with rms displacements 
which classically are reached at (initial displacements of) about 30% of the 
distance to the edge of the classically bounded region (and about 55 % for 
the quadratic map). This is reasonable at this preliminary stage, since one 
would expect an "eigenfunction" (in a Schr6dinger approach) to already 
have an appreciable value in the unbounded region, once its peak gets that 
close to the edge of the bounded region. 

The matrix representation of the cubic map (4.1) is 

X t + l + X ,  ~ = 2 C X , + 2 X  3, t . . . . .  - 1 , 0 , 1  .... (4.2) 

[cir. (2.3), (3.10)]. Using the v representation and multiplying out the e -+i~' 
terms, we obtain the time-independent matrix "map" 

eiVXe -iv + e-iVXe iv = 2CX + 2X 3 (4.3a) 

i.e., 

Xk,.costv -v~ . . . .  

m=O j=O (4.3b) 

analogous to the procedure used for the linear map (3.11). 

4.1. I t e r a t i v e  So lu t ions  

Truncation of the matrices creates some practical problems. Now the 
elements of the qm commutator (3.5b), (2.4), (2.10) cannot all be satisfied 
exactly, (13) e.g., note that for finite matrices trace{ [X 0, X1] } must vanish, 
whereas the rhs of Eqs. (3.5b), (2.4) requires it to be nonvanishing. So, in 
our ( N + I ) x ( N + I )  truncation the trace does vanish, i.e., the last 
diagonal element (at N, N) of the qm commutator cannot be satisfied and 
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is not utilized. Several other properties of finite matrices do not necessarily 
hold for infinite matrices. (13 15. 19) The truncated versions of Eqs. (4.3b) and 
(3.5c) present ( N +  1)2 + N equations for the ( N +  1)2 + N (real) variables 
in the truncated X, v (v0 is arbitrary). 

We iterate the equations as follows. Starting with some initial estimate 
X (~ usually the harmonic one (3.12), we evaluate the rhs of the matrix 
map (4.3b) for all k and n values (N~> k ~ n ~> 0: all matrices are Hermitian, 
k -  n is odd). Second, we extract from the lhs of (4.3b) at k = n + 1 all level 
separations: 

ZlVn+l=Vn+l--Vn (=AE,+I/h), n = 0  ..... N - 1  (4.4) 

using the old X(~~ n (iterations were considered "divergent" when 
Icos(Avn)[/> 1; or if e iv had been degenerate). Third, employing these level 
separations, we obtain from Eq. (4.3b) new estimates X(k~, ) at all other k and 
n values (n = 0,..., N; k = n + 1, n + 3,..., N), occasionally employing some of 
the techniques of ref. 26 to accelerate the convergence of the iterations, e.g., 
carrying all linear terms of (4.3b) over to its lhs. Fourth, using all the 
new estimates so far, we evaluate the n, n diagonal element of the qm 
commutator  (3.5c) and solve it for the as yet unknown "'n,n+lY(1) 2 at 
n = 0,..., N- -  1. The resulting phase angle ~b, [cf. Eq. (3.12)] is set equal to 
zero in all our calculations. Having thus come "full circle" in our iteration, 
we evaluate the off-diagonal elements of the commutator  (3.5b) to check 
how small they are and how well our finite truncation approximates the 
infinite commutator  matrix. The worst ones are near the Nth row/column, 
the best ones near the lowest rows/columns. We iterate until each of these 
off-diagonal elements is absolutely smaller than 10-7_h (usually 4(~70 
iterations). By that time the relative changes in the matrix elements Xk,n 
and in the vn are of order 10 -15. Some preliminary results are listed in 
Table I. 

Due to boundary effects of the truncation at n = N [e.g., the N, N 
element of the commutator  (3.5) is not utilized], the highest levels with 
reasonably consistent results (over different values of _h) appear to be 
n = N - 2  (or N - 3 ) ,  whence the use of N - 2  in Table I. Since the h of 
(3.5a) has absorbed some parameters (with unknown values), I used the 
maximum _h value which still appeared to yield numerical convergence. 
While this introduces some "noise" in the value of _h used, note that the 
product ( N - 2 ) h  and the highest level _h(vu_2--v0)/2~z remain relatively 
constant under large changes in N (cf. the second and fourth rows of 
Table I), which is as it should be (since v,=En/h oc E,/h). Hence, 
extremely large values of N are not required in order to get a good 
impression of the qm properties of the map! Comparing the fourth and fifth 
rows of Table I, where VN-2-- VO is given for the cubic map and for the 
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harmonic map, we see that the levels are lower than, but still close to, the 
levels of the harmonic map, i.e., v n - v  o < n a  [Eq. (3.12)], where ~/2~z is the 
classical winding number (3.8) at the origin of the phase plane. At 
n = N -  2 this difference is "larger" than at lower n values, but is still small. 
We find that the level splitting z/v, + 1(----vn + l - v , , )  decreases only slightly 
from the harmonic value, a = 0.408298(2zc), at low n values, to ~0.401(2~z) 
at n = N - 2  (see row 3 of Table I). It is easily checked that the classical 
winding numbers p also decrease only slightly, from a/2~ at the origin 
of the phase plane to p~0 .40  at Xo=X~O.057 (i.e., at 24% of the 
distance to the edge of the classically bounded region; p ~ 0.34375... there). 
It is for these initial values that the classical rms displacement, 
[=limq~(Zq=ox~q) m] equals the largest quantum rms displacement 
( ( N - 2 f  X 2 I N - 2 )  1/2) (see row 6 of Table I), whence our comparison of 
classical and qm results at these initial conditions. It is interesting that 
some qm results are close to the corresponding classical results for the 
cubic map. 

4.2. T ime  Evolut ion of  M i x e d  Sta tes  

Here I consider a general "mixed state" representation, in which the v 
(2.15) need not be diagonal. Starting with any (Hermitian) choice of Xo, X1 
which satisfy the qm commutator (3.5), I simply iterate the cubic matrix 
map (4.2) to obtain X2, X3, and subsequent X,. These continue to satisfy 
the qm commutator, as shown earlier [cf. Eqs. (2.7), (3.5b), (3.5c)]. The 
exact mixed state solutions of the linear quantum map (3.10) are 

s in (a ( t -  1)) sin(at) 
X ,=  ~ X o + ~ X  l (4.5) 

with any (Hermitian) X0, Xl, satisfying the qm commutator (3.5). For the 
cubic quantum map (4.2) ! numerically evaluate a particular mixed state. 
For X0 I chose the real-valued Xo (3.12) of the linear map at the same 
value of C. For XI I modified the complex X1 (3.12), (3.3) of the linear 
map to satisfy X_I=X~" here as well [as would be the case for a real 
matrix v in (3.3)], whence X ,=X~ r and 

Sym(Xl) -l~(X1 + X~r)_= CXo + Xo 3 with the Xo of Eq. (3.12) (4.6) 

[cf. Eq. (4.2)], where Sym is the symmetric part of the matrix. The Xl of 
the linear map satisfies (4.6) without the cubic term. Adding Xo 3 to the X~ of 
the linear map to provide X~ here does not change its qm commutator 
with Xo. 

Iterate the complex matrix map (4.2) out to t = 2.5 x 103. Repeating 
this for several _h values gives the maximum value -hmax for which the time- 
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Table II. M a x i m u m ~  Values to Keep X t "Bounded"  up t o  t = 2 . 5 x 1 0 3  f o r  a 

Given Truncation Level N a 

N =  103 N =  69 N =  36 N =  9 

~-~max 1.1467 x 10 -3 1.733 x 10 -3 3.474 x 10 -2 1.622 x 10 -2 

(tel. error ~ 0.2% ) 

( N -  2) hma x 1.1581x 10 1 1.161 x 10-1 1.181 x 10-I 1.136• 

a Compare these rows with the first three rows of Table I. All results are for C = -0.83855 and 
the initial conditions given in Eq. (4.6). 

dependent solution X, remains "bounded." A solution Xt is considered 
"unbounded" as soon as (n] X 2 t n ) >  2. The choice of 2 is a safety factor: 
Classically the bounded x 2 values remain less than 0.42 and the (time 
average of the) "bounded" quantum rms values remains less than 0.4. The 
resulting hma x values are listed in Table II. 

Note that this yields larger b values than the ones in Table I, for 
which the preliminary v-level scheme converged numerically. We might 
correspondingly increase the usable _h values in the v scheme by imple- 
menting all of the techniques of ref. 26. This was not yet done here. 

I intend to employ of the methods of Section 4.1 as well as Section 4.2 
to study quantum chaos (4 7) and follow up other connections with classical 
nonlinear dynamics. 

Some recent interesting and relevant articles are listed in refs. 27-32. 
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